
CS 537 Notes, Section #12: Deadlock 

 

 

Deadlock is one area where there is a strong theory, but it is almost completely ignored in 

practice. Reason: solutions are expensive and/or require predicting the future.  

A simple deadlock example with semaphores, for two processes:  

 

    Initialization 

    -------------- 

    sem1 = new Semaphore(1); 

    sem2 = new Semaphore(1); 

 

    Process A        Process B 

    ---------        --------- 

     P(sem1)          P(sem2) 

     P(sem2)          P(sem1) 

 

Define deadlock: a situation wherein each of a collection of processes is waiting for 

something from other processes in the collection. Since all are waiting, none can provide any 

of the things being waited for.  

Deadlock can occur over separate resources, as in above example, or even over separate 

copies of a single resource. Block building contest: suppose each of a collection of processes 

is trying to produce a result by acquiring a number of resources one after the other.  

 P processes.  



 N blocks needed by each process.  

 T total blocks.  

Will the processes all be able to complete their jobs?  

 

 

 

These are relatively simple-minded cases. Things may be much more complicated:  

 In general, do not know in advance how many resources a process will need. If only 

we could predict the future....  

 There may be many different classes of resources, and one process may need 

resources from several classes.  

 Processes may release and re-request the same resource.  

 Deadlock can occur over anything involving waiting, for example messages in a pipe 

system. Hard for OS to control.  

In general, there are four conditions for deadlock:  



 Limited access: resources cannot be shared.  

 No preemption. Once given, a resource cannot be taken away.  

 Multiple independent requests: processes do not ask for resources all at once.  

 There is a circularity in the graph of who has what and who wants what. Draw graph 

showing processes as circles, resources as squares, arrows from process to resource 

waited for, from resource to owning process.  

 

 

Now, draw the resource graph for the intersection diagram at the start of this lecture. The 

hardest part is to identify the shared resources.  

 

The Dining Philosophers Problem (due to Edsger Dijkstra and Tony Hoare, 1965)  

 

 

 Five philosophers sit at a circular table doing one of two things: eating or thinking. 

 While eating, they are not thinking, and while thinking, they are not eating. 



 A large bowl of spaghetti is in the center and a fork is placed in between each pair of 

adjacent philosophers. 

 This spaghetti is difficult to serve and eat with a single fork, so each philosopher must 

acquire two forks to eat. 

 Each philosopher can only use the forks on their immediate left and right. 

 Each philosopher can acquire forks only one at a time. 

 Philosophers never speak to each other. 

 

Solutions to the deadlock problem fall into two general categories:  

 Detection: determine when the system is deadlocked and then take drastic action. 

Requires termination of one or more processes in order to release their resources. 

Usually this is not practical.  

 Prevention: organize the system so that it is impossible for deadlock ever to occur. 

May lead to less efficient resource utilization in order to guarantee no deadlocks.  

Deadlock prevention: must find a way to eliminate one of the four necessary conditions for 

deadlock:  

 Create enough resources so that there is always plenty for all.  

 Do not allow waiting: mention phone company solution. This punts the problem back 

to the user.  

 Do not allow exclusive access. This is probably not reasonable.  

 Allow preemption.  

 Make process ask for everything at once. Either get them all or wait for them all. 

Tricky to implement: must be able to wait on many things without locking anything. 

Painful for process: may be difficult to predict, so must make very wasteful use of 

resources. This requires the process to predict the future.  

 Make ordered or hierarchical requests. E.g. ask for all S's, then all T's, etc. All 

processes must follow the same ordering scheme. Of course, for this you have to 

know in advance what is needed.  

 

Dijkstra's Banker's Algorithm is an approach to trying to give processes as much as is 

possible, while guaranteeing no deadlock. For a complete explanation, see Silberschatz and 

Galvin, p. 256.  

 A process specifies the maximum amount of a resource it will ever need.  

 The process can never ask for more than this amount.  

 The total of all resources given will never exceed the total number of available 

resources (can not give away what you do not have - note how this is different from 

government).  

 Never grant a allocation request if it will:  

o prevent the first process from finishing; and 

o given that the first process finishes and releases all of its resource, prevent the 

second process from finishing; and 



o given that the first through k
th

-1 processes finish and releases all of their 

resources, prevent the k
th

 process from finishing. 

In general, prevention of deadlock is expensive and/or inefficient. Detection is also expensive 

and recovery is seldom possible (what if process has things in a weird state?).  

 

IBM OS/360 solutions:  

 Data set names are enqueued all at once on a job basis.  

 Devices, volumes, and memory are allocated in order on a per-job-step basis.  

 Temporary file space can cause deadlocks. Operator intervenes and kills a job.  
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